The effect of pressure on electrical resistance

(4). It is seen that γ_G and γ_R have very nearly the same values.[†] Thus, just as the temperature dependence of p_i is given surprisingly well by the Bloch-Grüneisen expression, so the temperature dependence of the pressure coefficient agrees with the simple theory better than one would have expected from more sophisticated theoretical considerations.

TABLE 12. THE COEFFICIENTS γ_R and d ln $K/d \ln V$

	Cu	Li	Na	K	
11 77				all T	$T > \frac{1}{4}\theta$
$\frac{\mathrm{d}\ln K}{\mathrm{d}\ln V}$	$-2 \cdot_0$	$-2 \cdot_9$	1.8_{5}	$2 \cdot _{\mathfrak{g}}$	$2 \cdot 3$
YR	$2 \cdot_3$	$1 \cdot 1$	1.3	1.4	1.6
γ_G	$2 \cdot 0$	0.90	1.3	1.3	

4.2.2. Departures from simple theory

It is interesting to consider why the simple theory works and what its limitations are. We can come to some conclusions about this by considering the $\rho_i - T$ curves of any one metal at different densities as though they were the properties of different

† We shall later be interested in the deviations from the linear relation predicted by equation (2) and we therefore include in Table 12 values of γ_R and d ln K/d ln V for potassium which we deduce from results at 'high' temperatures, i.e. for temperatures greater than about $\frac{1}{4}\theta$.

203